THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH4060 Complex Analysis 2022-23

Tutorial 10
6th April 2022

1. (Ex. 21 Ch .8 in textbook) We consider conformal mappings to triangles.
(a) Show that

$$
\int_{0}^{z} z^{-\beta_{1}}(1-z)^{-\beta_{2}} d z
$$

with $0<\beta_{1}, \beta_{2}<1$, and $1<\beta_{1}+\beta_{2}<2$, maps \mathbb{H} to a triangle whose vertices are the images of 0,1 , and ∞, and with angles $\alpha_{1} \pi, \alpha_{2} \pi$, and $\alpha_{3} \pi$, where $\alpha_{j}+\beta_{j}=1$ and $\beta_{1}+\beta_{2}+\beta_{3}=2$.
(b) What happens when $\beta_{1}+\beta_{2}=1$?
(c) What happens when $\beta_{1}+\beta_{2}<1$?
(d) In (a), the length of the side of the triangle opposite angle $\alpha_{j} \pi$ is $\frac{\sin \left(\alpha_{j} \pi\right)}{\pi} \Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)$.

Solution. (a) There is a small typo in our textbook, it should be $(1-z)^{-\beta_{2}}$ instead of $(1-z)^{\beta_{2}}$. Then we can use the Schwarz-Christoffel integral:

$$
S(z)=\int_{0}^{z} z^{-\beta_{1}}(1-z)^{-\beta_{2}} d z=e^{-\beta_{2} \pi} \int_{0}^{z} z^{-\beta_{1}}(z-1)^{-\beta_{2}} d z
$$

Then by proposition 4.1 , it maps $\mathbb{R} \cup\{\infty\}$ to a triangle \mathbb{T} which mapping $0,1, \infty$ to the vertexes. Because \mathbb{H} is connected and $S(z)$ is a continuous map, $S(\mathbb{H}) \subseteq \mathbb{C} \backslash \bar{T}$ or $S(\mathbb{H}) \subseteq T$. Since holomorphic maps preserve the orientation, the only possible case is $S(\mathbb{H}) \subseteq T$. Now we want to show it is conformal.
For injectivity, we use arguement principle, Let $\gamma(t): \mathbb{R} \rightarrow \mathbb{R}+i \epsilon$ be the curve very close to the real line. Then it is not difficult to see, $\forall w \in T$:

$$
\int_{-\infty}^{\infty} \frac{(S(\gamma(t))-w)^{\prime}}{S(\gamma(t))-w} d t=\int_{-\infty}^{\infty} \frac{(S(t)-w)^{\prime}}{S(t)-w} d t=\left.\log (S(t))\right|_{-\infty} ^{\infty}=1 \cdot 2 \pi i
$$

This tells us the zeros inside the triangle \mathbb{T} of $S(z)-w$ is 1 , i.e $S(z)$ is injective.
For surjectivity, if it is not surjective, then $\operatorname{Im}(S(z))$ cannot be a simply connected region, but on the other hand $\operatorname{Im}(S(z))$ is homeomorphic to \mathbb{H} which is simply connected.
(b) The image will be the region bounded by two parallel lines and a line segment.
(c) The image will be the region bounded by two non-parallel lines and a line segment.
(d) Recall that the beta function:

$$
B(\alpha, \beta):=\int_{0}^{1}(1-t)^{\alpha-1} t^{\beta-1} d t=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

Thus

$$
\int_{0}^{1}(1-t)^{-\beta_{2}} t^{-\beta_{1}} d t=\frac{\Gamma\left(1-\beta_{2}\right) \Gamma\left(1-\beta_{1}\right)}{\Gamma\left(2-\beta_{1}-\beta_{2}\right)}=\frac{\Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{1}\right)}{\Gamma\left(1-\alpha_{3}\right)}=\frac{\sin \alpha_{3} \pi}{\pi} \Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)
$$

$$
\begin{aligned}
\int_{1}^{\infty}(1-t)^{-\beta_{2}} t^{-\beta_{1}} d t & =\int_{1}^{0}\left(1-\frac{1}{s}\right)^{-\beta_{2}}\left(\frac{1}{s}\right)^{-\beta_{1}} \cdot \frac{-1}{s^{2}} d s=\int_{0}^{1}(s-1)^{-\beta_{2}} s^{\beta_{1}+\beta_{2}-2} d s \\
& =\frac{\Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)}{\Gamma\left(1-\alpha_{2}\right)}=\frac{\sin \alpha_{1} \pi}{\pi} \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right) \Gamma\left(\alpha_{1}\right)
\end{aligned}
$$

similarly applying $t=1-\frac{1}{s}$ we get

$$
\int_{-\infty}^{0}(1-t)^{-\beta_{2}} t^{-\beta_{1}} d t=\frac{\sin \alpha_{2} \pi}{\pi} \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right) \Gamma\left(\alpha_{1}\right)
$$

2. (Ex. 22 Ch .8 in textbook) If P is a simply connected region bounded by a polygon with vertices a_{1}, \ldots, a_{n} and angles $\alpha_{1} \pi, \ldots, \alpha_{n} \pi$, and F is a conformal map of the disc \mathbb{D} to P , then there exist complex numbers B_{1}, \ldots, B_{n} on the unit circle, and constants c_{1} and c_{2} so that

$$
F(z)=c_{1} \int_{1}^{z} \frac{d \zeta}{\left(\zeta-B_{1}\right)^{\beta_{1}} \ldots\left(\zeta-B_{n}\right)^{\beta_{n}}}+c_{2}
$$

Solution. Recall we have conformal map $G: \mathbb{D} \rightarrow \mathbb{H}$:

$$
G(z)=i \frac{1-z}{1+z} \quad G^{-1}(w)=\frac{i-w}{i+w}
$$

then $\tilde{F}=F \circ G^{-1}$ is a conformal map from \mathbb{H} to P. Thus it takes the following form:

$$
\tilde{F}(w)=c_{1} \int_{0}^{w} \frac{d \zeta}{\left(\zeta-A_{1}\right)^{\beta_{1}} \ldots\left(\zeta-A_{n}\right)^{\beta_{n}}}+c_{2}
$$

Therefore

$$
\begin{aligned}
F(z) & =c_{1} \int_{1}^{z} \frac{d\left(\frac{i-\zeta}{i+\zeta}\right)}{\left(\frac{i-\zeta}{i+\zeta}-A_{1}\right)^{\beta_{1}} \ldots\left(\frac{i-\zeta}{i+\zeta}-A_{n}\right)^{\beta_{n}}}+c_{2} \\
& =c_{1} \int_{1}^{z} \frac{\frac{-2 i}{(i+\zeta)^{2}} d \zeta}{\left(\frac{i-\zeta}{i+\zeta}-A_{1}\right)^{\beta_{1}} \ldots\left(\frac{i-\zeta}{i+\zeta}-A_{n}\right)^{\beta_{n}}}+c_{2} \\
& =c_{1}^{\prime} \int_{1}^{z} \frac{d \zeta}{\left(\zeta-B_{1}\right)^{\beta_{1}} \ldots\left(\zeta-B_{n}\right)^{\beta_{n}}}+c_{2}
\end{aligned}
$$

3. (Ex.24(a) Ch. 8 in textbook) The elliptic integrals K and K^{\prime} defined for $0<k<1$ by

$$
K(k)=\int_{0}^{1} \frac{d x}{\left(\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)\right)^{1 / 2}} \quad \text { and } \quad K^{\prime}(k)=\int_{0}^{1 / k} \frac{d x}{\left(\left(x^{2}-1\right)\left(1-k^{2} x^{2}\right)\right)^{1 / 2}}
$$

Show that if $\tilde{k}^{2}=1-k^{2}$ and $\tilde{k}>0$, then

$$
K^{\prime}(k)=K(\tilde{k})
$$

Solution. We follow the hint, by change of variable $x=\left(1-\tilde{k}^{2} y^{2}\right)^{-1 / 2}$, we have $d x=$ $\tilde{k}^{2} y\left(1-\tilde{k}^{2} y^{2}\right)^{-3 / 2} d y$, thus

$$
\begin{aligned}
K^{\prime}(k) & =\int_{0}^{1 / k} \frac{d x}{\left(\left(x^{2}-1\right)\left(1-k^{2} x^{2}\right)\right)^{1 / 2}} \\
& =\int_{0}^{1} \frac{\tilde{k}^{2} y\left(1-\tilde{k}^{2} y^{2}\right)^{-3 / 2} d y}{\left(\left(\tilde{k}^{2} y^{2}\left(1-\tilde{k}^{2} y^{2}\right)^{-1}\right)\left(\tilde{k}^{2}\left(1-y^{2}\right)\left(1-\tilde{k}^{2} y^{2}\right)^{-1}\right)\right)^{1 / 2}} \\
& =\int_{0}^{1} \frac{d y}{\left(\left(1-y^{2}\right)\left(1-\tilde{k}^{2} y^{2}\right)\right)^{-1 / 2}} \\
& =K(\tilde{k})
\end{aligned}
$$

